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Abstract. A precise identification of prosodic phenomena and the construction of tools able to properly manage
such phenomena are essential steps to disambiguate the meaning of certain utterances. In particular they are useful
for a wide variety of tasks: automatic recognition of spontaneous speech, automatic enhancement of speech-
generation systems, solving ambiguities in natural language interpretation, the construction of large annotated
language resources, such as prosodically tagged speech corpora, and teaching languages to foreign students using
Computer Aided Language Learning (CALL) systems. This paper presents a study on the automatic detection of
prosodic prominence in continuous speech, with particular reference to American English, but with good prospects
of application to other languages. Prosodic prominence involves two different prosodic features: pitch accent
and stress accent. Pitch accent is acoustically connected with fundamental frequency (FO) movements and overall
syllable energy, whereas stress exhibits a strong correlation with syllable nuclei duration and mid-to-high-frequency
emphasis. This paper shows that a careful measurement of these acoustic parameters, as well as the identification
of their connection to prosodic parameters, makes it possible to build an automatic system capable of identifying
prominent syllables in utterances with performance comparable with the inter-human agreement reported in the
literature. Two different prominence detectors were studied and developed: the first uses a training corpus to set up
thresholds properly, while the second uses a pure unsupervised method. In both cases, it is worth stressing that only
acoustic parameters derived directly from speech waveforms are exploited.
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1. Introduction nomena is often essential in order to solve possi-

ble ambiguities in the meaning of some utterances.

The study of prosodic phenomena in speech is a cen-
tral topic in language investigation and it is generally
agreed that it represents one of the main streams for
improving the performance of speech processing sys-
tems. Speakers tend to focus the listener’s attention
on the most important parts of the message by means
of prosodic markers and, as outlined in Beckman and
Venditti (2000), a precise identification of such phe-

Automatic prosody analysis or synthesis is a fun-
damental step in a variety of speech processing
applications. For example, it can improve perfor-
mance in spontaneous speech automatic recognition
(Hieronymus et al., 1992), it enhances the fluency
and adequacy of automatic speech-generation systems
(Bulyko, 1999) and it may be useful for solving am-
biguities in natural language parsing (Warren, 1996).
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Moreover, the construction of large annotated language
resources, such as prosodically tagged speech corpora,
shows an increasing interest both for research purposes
and for language teaching (Hirst, 2001). Also teaching
languages using CALL systems with software modules
capable of properly managing prosodical information
(Auberg et al., 1998; Nouza, 1999; Delmonte, 2000)
seems to be an interesting option, especially in second
language acquisition.

There are many studies that examine the general
aspects of correlation between prosodic phenomena,
such as rhythm (Ramus, 2002), boundary tones (Yang
and Wang, 2002), prominence (Bagshaw, 1994), and
acoustic parameters. Other studies are focused on
the building of automatic systems capable of reli-
ably identifying either one acoustic correlate of promi-
nence (e.g. Fach and Wokurek, 1995; Campione and
Veronis, 1998) or a complete set of prosodic param-
eters, such as prominence, intonation, rhythm, etc.,
and their acoustic correlates (Bagshaw, 1993, 1994;
Wightman and Ostendorf, 1994; Jenkins and Scordilis,
1996; Delmonte, 2000). These studies typically rely
on additional phonetic information, such as phone la-
belling and/or utterance transcriptions, for deriving
prosodic phenomena. Such systems, based on Hidden
Markov models, neural networks or similar methods,
often require a training phase in order to work prop-
erly on test data. Although powerful, they present the
drawback of requiring an adequately segmented and
prosodically labelled speech corpus for carrying out
the training phase. This resource might not be always
available and it would certainly be expensive to build.
Moreover, the system would be permanently bound to
one specific language.

One of the most important prosodic features is
prominence: “a word, or part of a word, made promi-
nent is perceived as standing out from its environment”
(Terken, 1991). Following Beckman’s (1986) phono-
logical view, further developed by other scholars, for
example Bagshaw (1993, 1994), syllables that are per-
ceived as prominent either contain a pitch accent or a
stress accent. On the acoustic/phonetic side, the accom-
plishment of such features has to be strictly correlated
with particular behaviour of acoustic parameters, either
considered as single features or, more likely, as com-
binations of them. As well as the works already cited,
there are many other studies (Sluijter and van Heuven,
1996; Streefkerk, 1997; Streefkerk et al., 1999), sug-
gesting that some of the main acoustic correlates of
prominence are pitch movements (strictly connected

with fundamental frequency—FO0), overall syllable en-
ergy, syllable duration and spectral emphasis. These
studies perform an in-depth analysis of the correlation
between prominence and a set of acoustic features, us-
ing various methods and techniques, to identify the best
acoustic correlates of prosodic prominence. Although
providing an accurate analysis of the correlations be-
tween single acoustic parameters and prominence, they
do not assess quantitatively the combinations of such
features for the best prominence identification. They
suggest, from a qualitative point of view, possible com-
binations without exploring them using specific data.
These suggestions formed the basis of our study, but
their claims were further analysed and verified using
quantitative data.

Despite the quantity and quality of studies on this
topic, it seems that the automatic and reliable detection
of prosodic prominence, without providing phonetic
information, such as utterance transcription or training
corpora composed of segmented utterances, is still an
open question.

This paper presents a study on the relationships be-
tween prosodic prominence and acoustic features with
the aim of designing a prototype system for the auto-
matic detection of prominence features in speech us-
ing only acoustic/phonetic parameters and cues. First,
the problems related to the automatic derivation of ba-
sic acoustic parameters, such as duration, energy, pitch
contour and spectral emphasis, from speech wave-
forms, are addressed, proposing, whenever necessary,
novel methods to the specific acoustic feature extrac-
tion. Then, the relationships between these acoustic
features and the wanted prosodic features, such as
pitch accents, stress accents and prominence, are stud-
ied, casting some light on the possible design of au-
tomatic prominence detectors. Finally, two alterna-
tive solutions are presented in the paper. The first is
grounded on a Gaussian mixture discriminator model.
It offers good performance but it relies on a training
corpus, manually tagged inserting prominence infor-
mation, to properly set up the parameters involved
in the decision procedure. The second, more innova-
tive, was developed to explore the possibility to obtain
basically the same satisfactory performance without
making use of training procedures or other additional
resources. This new method is based on the defini-
tion of a general prominence function that combines
some acoustic parameters directly derived from speech
waveforms. As such it does not require any additional
resource.
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The data set used in these experiments is a subset
of the DARPA/TIMIT acoustic-phonetic continuous
speech corpus, consisting of thousands of transcribed,
phone-segmented and aligned sentences of American
English (Garofolo et al., 1993). In this study, the TIMIT
annotations are used only for testing and measuring
system performance, rather than additional information
for additional the prominence detection algorithms.

The rest of the paper is organised as follows.
Section 2 describes the automatic derivation of acous-
tic parameters from speech waveforms. Section 3
presents a study about the combination and relation-
ships of these acoustic features to identify prosodic
features such as pitch accents, stress accents and
prominence, casting some light on the construction of
automatic detectors of such prosodic features. Section
4 discusses the two different detectors of prosodic
prominence presented in this study. Section 5 draws
the conclusions of the work, comparing and discussing
the results obtained with the literature considered.

2. The Acoustic Parameters

The methods for prosodic feature extraction described
in the next section are based on the computation of the
following acoustic parameters: syllable duration, fun-
damental frequency (FO) contour, overall energy, and
spectral emphasis. Before examining them in detail, it
is necessary to state in advance that all the acoustic pa-
rameters considered here must be normalised to some
extent to avoid the natural variations among different
speakers and different utterances. Thus, all graphs and
measurements presented here refer to normalised pa-
rameters. This is why units of measurements are not
always indicated in the diagrams. In the following sec-
tions, we describe the specific normalisation proce-
dures applied to each parameter.

2.1. Duration

The linguistic theories of prosodic prominence men-
tioned in the introduction agree in considering syllable
duration as one of the fundamental acoustic parameters
for detecting syllable stress, certainly in American En-
glish, but also in many other languages. Unfortunately,
the automatic segmentation of the utterance into sylla-
bles is a challenging task. In (Howitt, 2000) a survey
of syllable segmentation algorithms is presented, but
none of the methods analysed in this study seems
to perform well when applied to continuous speech.

To overcome this problem an alternative duration mea-
sure for prosodic prominence detection, capable of of-
fering good performance even in this case, should be
considered.

Instead of measuring the whole syllable length, heav-
ily affected by consonant durations, it would be prefer-
able, from an automatic implementation point of view,
to measure the syllable nucleus duration, as done, for
example, in Jenkin, Scordilis (1996). However, even
if there are scholars claiming that durational variations
due to the presence of stress mainly affects vowel dura-
tions in the syllable (Waterson, 1987), it is necessary to
show that considering syllable nuclei instead of whole
syllables does not lead to any information loss, as far
as the ability to discriminate between prominent and
non prominent syllables is concerned. To explore such
an interesting possibility, we considered some utter-
ances taken from the TIMIT corpus, containing sylla-
bles classified as prominent and non- prominent, and
compared the duration of the syllable nucleus with the
duration of the entire syllable. Taking the logarithm
of these measures and adopting a Gaussian approxi-
mation (see Section 4.1), we obtained the distributions
presented in Fig. 1. The two sets of Gaussians look
qualitatively very similar and the separation between
the two classes (prominent and non-prominent sylla-
bles) remains almost the same using the two different
measures. As a further test, we built two Gaussian dis-
criminators on the basis of the distributions presented
in Fig. 1 and classified a set of test syllables, with re-
spect to prominence, obtaining almost the same ratio
of correct classifications. Note that the exact classifi-
cation performance is not important in this context, as
the syllable duration measure is only one of the pa-
rameters that can be jointly applied for prominence
detection. The relevant conclusion, interesting for the
present and future prominence studies, is that we can
reliably replace the syllable duration measure, neces-
sarily affected by large measurement error whenever
obtained by automatic procedures, with the measure of
syllable nucleus duration, which can be automatically
obtained with a higher accuracy level. To the best of
the authors’ knowledge, this important consideration
has been qualitatively discussed in various works, but
a quantitative study based on a large amount of data,
as the one reported here, has not been presented in the
literature before.

To reliably identify the syllable nuclei in the utter-
ance and measure their duration to obtain the acous-
tic parameter needed for subsequent computations, we
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Figure 1. Gaussian approximation of duration measures: whole syllable (left) and syllable nucleus (right).

applied a modified version of the convex-hull algorithm
(Mermelstein, 1975) to the utterance energy profile.
This was computed after band-pass filtering (300-900
Hz) the speech-samples, as suggested in Howitt (2000),
to filter out energy information not belonging to vowel
phones, which forms the syllable nucleus. The duration
parameter is then normalised by considering the mean
duration of the syllable nuclei in the utterance. This is a
standard technique for Rate-Of-Speech (ROS) normal-
isation, described, for example, in Neumeyer (1996)
and Venkata Ramana (2000).

All the subsequent measurements of acoustic pa-
rameters will be referred to the syllable-nucleus in-
tervals computed using the method described in this
section.

2.2.  Fundamental Frequency (F0O) Contour

The extraction of FO contour, or pitch contour, is an-
other demanding task. Bagshaw (1994) carried out an
accurate comparison of different algorithms for funda-
mental frequency estimation. Most of the complexity of
pitch extraction process resides in the post-processing
optimisation. Stops and glitches often tend to distort
the contour, introducing spurious changes in the pro-
file. Other typical problems in obtaining a correct pitch
profile derive from octave jumps, where the pitch fre-
quency computed by the algorithm, in a specific speech
frame, is found to be double (or half) the correct pitch
frequency. These FO computation errors led to spuri-
ous sharp rises or falls in the pitch contour. A post-
processing procedure to smooth out such variations is
often required in order to obtain more reliable results.

To extract pitch contour we used the ESPS get_f0
program, derived from the algorithm presented in
Talkin (1995), and, in particular, the version included
in the wavesurfer speech package (Sjolander and
Beskow, 2000). To obtain a continuous profile, the post-
processing phase involves octave-jump removers and
profile smoothers, derived from the ones proposed in
Bagshaw (1994), applied both at voiced interval and
sentence level, and a final interpolation between voiced
regions.

2.3. Energy

Differently from the parameters presented in the pre-
vious subsections, the third acoustic parameter con-
sidered here, namely the syllable nucleus energy (or
intensity), can be automatically computed in various
ways without any particular difficulty. Here we refer to
RMS energy, defined as:

RMS __
E;T =

i=1

where N is the number of samples per frame and a;_y
are the speech samples in the j-th frame. The nucleus
energy is successively normalised to the mean nucleus
energy over the utterance. This reduces the energy vari-
ation across different utterances and different speakers.

2.4.  Spectral Emphasis

In the recent literature, and in particular in the influ-
ential work of Sluijter and van Heuven (1996), it has
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Figure 2. Distributions of prominent and non-prominent syllable nucleus energies in the frequency bands 0-300 Hz (top left), 300-2200 Hz

(top right) and 22004000 Hz (bottom).

been claimed, that mid-to-high frequency emphasis is
a useful parameter in determining stressed syllables.
To verify this hypothesis, each nucleus segment spec-
trum was divided into three bands, making use of band-
pass FIR filters, namely from O to 300 Hz, from 300
to 2200 Hz and from 2200 to 4000 Hz. The RMS
energy of each segment/band pair was successively
computed. By examining the distributions of promi-
nent and non-prominent syllable energies in the fre-
quency bands considered (see Fig. 2), the two bands
0-300 Hz and 22004000 Hz show a clear overlap-
ping between prominent and non-prominent syllables,
while the central band from 300 to 2200 Hz exhibits a
clear separation between the two classes. These quan-
titative results confirm a strict dependence of syllable
prominence to vowel mid-to-high frequency emphasis,
the frequency band where the main vowel formants re-
side. Thus, agreeing with the hypothesis suggested by

Sluijter and van Heuven, with a view to identifying
stress accents (see Section 3.1), we will consider that
the spectral emphasis is measured by the energy of this
specific frequency band.

3. Prosodic Parameters

This section examines the prosodic quantities, stress
accent, pitch accent and prominence, that are the ob-
ject of the study, and their acoustic correlates. As al-
ready mentioned in the introduction, syllables that are
perceived as prominent either contain a pitch accent
or a stress accent, or both. Thus, prominence can be
described by relying on two different prosodic param-
eters, stress accent and pitch accent, both sufficient to
identify a prominent syllable, but none of them neces-
sary to mark a syllable as prominent. These prosodic
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parameters can be derived directly from combinations
of the four acoustic features described above. The rela-
tionships between the prosodic and acoustic parameters
define a hierarchy of parameters in which the higher
levels are defined and built over the lower ones.

The data used in the following sections are de-
rived from the TIMIT corpus and every syllable was
manually classified as prominent or non-prominent. It
emerges quite clearly in the following subsections that
being able to classify these syllables with respect to
the two different accents, instead of classifying them
with respect to prominence, would have been prefer-
able, for both the qualitative analysis that we will carry
out in this section and the design of the detectors de-
scribed in Section 4. Unfortunately it is very difficult
for humans to distinguish between stress accents and
pitch accents when listening to an utterance. It is only
possible to reliably perceive, also with considerable
difficulty, if a syllable is prominent or not with respect
to the surrounding context. That is why we had to per-
form this study with data classified only with respect to
prominence.

3.1.  Stress Accent

The main correlates of syllable stress reported in liter-
ature are syllable duration and energy (Bagshaw, 1993,
1994; Streefkerk, 1997, 1999). On this topic Sluijter
and van Heuven (1996) have introduced a further
refinement, confirmed also in a later study (Heldner,
2001), casting some light on the exact correlation

between the different acoustic parameters. “Previous
research on American English was generally hampered
by covariation of stress and (pitch) accent” they claim.
Their studies clearly divided the two phenomena,
pointing out that the most reliable correlates of syllable
stress are syllable duration and mid-to-high frequency
emphasis.

In Fig. 3 two sets of prominent and non-prominent
syllables are depicted as a function of both log-
normalised nucleus duration and log-normalised en-
ergy in the 300 to 2200 Hz band. There is a clear
evidence supporting Sluijter and van Heuven’s ideas:
prominent syllables exhibit a longer duration and
greater energy in the vowel mid-to-high-frequency
band. Although an overlapping region emerges quite
clearly from the diagrams, it should be considered that
in the model presented here stress accent is only one
of the parameters contributing to prominence. In other
words, the prominent syllables that cannot be selected
on the basis of the process presented in this section can
still be identified correctly exploiting the other param-
eter contributing to prominence, the pitch accent.

3.2.  Pitch Accent

There is a long tradition of studies dealing with intona-
tion profiles and pitch accents (Pierrehumbert, 1980;
Beckman, 1996; Campione and Veronis, 1998). The
influential work of Pierrehumbert introduced a two-
level categorisation of pitch profiles enriched by a wide
combination of symbols and diacritics to represent
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Figure 3. Prominent and non-prominent syllables as a function of log-normalised nucleus duration and log-normalised nucleus energy in
the spectral band from 300 to 2200 Hz. The dashed line represents the decision threshold between the two sets computed using the Gaussian

discriminator (see Section 4.1).
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all possible intonation contours and pitch accents. Un-
fortunately, such a categorisation, as well as the famous
ToBI labelling scheme (Pitrelli et al., 1994), appears to
be difficult to implement in an automatic system. Taylor
(1992, 1993, 1995, 2000) proposed a different view of
intonation events. Starting from a rise/fall/connection
(RFC) model, he defined a set of parameters capable of
uniquely describing events in the pitch contour (pitch
accent shapes and boundary tones). This set, called
TILT, consists of five parameters defined as:

. |Arise| - |Afal]| . Drise - Dfall
tiltymp = ————— tiltar = ————F—
|Arise| + [Afanl Dyise + Dt
. |Arise| - |Afa11| Drise - Dfall
tilt =

2. (|Arise| + |Afa11|)
Aevent = |Arise| + |Afall|

2. (Drise + Dfall)
Devent = Drise + Dfall

where Avise, Atanls Drises Dran are respectively the am-
plitude and the duration of the rise and fall segments
of the intonation event.

Our implementation for the extraction of the pitch
shape follows Taylor’s proposal. The FO contour is
first converted into an intermediate RFC model. To do
that the contour is segmented into frames 0.025 second
long; next, the data in each frame are linearly interpo-
lated using a Least Median Squares method to obtain
robust regression and deletion of outliers (Rousseeuw,
1987); then every frame interpolating line is classified
as rise, fall or connection, depending on its gradient, as
suggested in Hieronymous (1989) and Taylor (1993).
After that, subsequent frames with the same classifica-
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tion are successively merged into one interval and the
duration and amplitudes of the rise and fall sections are
measured to finally derive the TILT parameter set.
Having obtained a compact RFC representation of
the utterance pitch profile, it is possible to exploit it in
order to extract intonational events in the FO contour.
Each of these events is then assigned to the nearest nu-
cleus. The aim is to determine the best combination,
among the acoustic and TILT parameters, for identi-
fying the actual pitch accents in the utterance. As de-
scribed by Taylor (2000), an intonational event that can
be considered as a good candidate for pitch accent ex-
hibits a rise followed by a fall in the pitch profile. There
are different degrees of such profiles and, in general,
rise sections appear to be more relevant for prominence.
Sluijter and van Heuven suggested that the pitch ac-
cent can be reliably detected by using overall syllable
energy and some measure of pitch variation. As far as
pitch variation is concerned, the event amplitude, which
is one of the TILT parameters, can be considered as a
proper measure, being the sum of the absolute ampli-
tude of the rise and fall sections of a generic intonational
event. However, a further refinement can be obtained
by multiplying the event amplitude (Aevent) by its du-
ration (Deyent) and normalising the product by means
of a weighting factor that expresses the relevance of
the event along the utterance (Reyen). This factor is
computed by dividing the event amplitude by the max-
imum pitch variation and the maximum pitch absolute
value across the utterance. Figure 4 shows a plot of
prominent and non-prominent syllables as a function
of overall syllable nucleus energy and the product of

Non Prominent Syllables

Log. (Aevenl * Devent * Rewn!)
' &

Log. Norm. Energy

Figure 4. A plot of prominent and non-prominent syllables as a function of overall syllable nucleus energy and intonational event parameters
(the prominent set contains only syllable with Aevent > 5 Hz and Deyent > 25 ms). The dashed line represents the decision threshold between
the two sets computed using the Gaussian discriminator (see Section 4.1).
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the event parameters, just described, on a log scale.
Quite a clear correlation emerges among these param-
eters when identifying prominent syllables.

3.3.  Prominence

In the previous subsection we established some qual-
itative relationships between acoustic parameters and
some prosodic quantities, in particular stress accent and
pitch accent. As outlined before, prominence can be
defined, from a theoretical point of view, as a combi-
nation of these two prosodic features. In particular the
presence of either one accent or the other inside a syl-
lable is sufficient for classifying it as prominent in the
utterance considered.

Remaining in a qualitative perspective, we have al-
ready seen that the acoustic parameters considered in
the previous section and the relationships between them
presented in the previous subsections should allow us
to build a reliable prominence detector. In general we
can say, especially by looking at Figs. 3 and 4, that the
higher the acoustic parameters, the stronger the accent
perception, and thus also the prominence perception.

In the next section two possible detectors of prosodic
prominence, based on these qualitative observations,
will be introduced.

4. Prominence Detectors

This paper presents two different detectors of prosodic
prominence, based on different assumptions and on
different theoretical models. The first is grounded on
multivariate Gaussian discriminators, so it needs to be
tuned with annotated data in order to properly set up
the model parameters, while the second is based on the
definition of a continuous prominence function and it
does not need any training phase.

4.1. The Supervised System

The first prominence detector stems from the obser-
vation that the raw data representing acoustic parame-
ters are approximately distributed in a lognormal way.
This property can be qualitatively verified by inspec-
tion of Figs. 3 and 4, which showed the considered
parameter on a log scale. It can be observed that the
logarithm of the four acoustic parameters follows, at
least approximately, a normal distribution. This attrac-
tive property suggests the adoption of an interesting

theoretical approach. Modelling the data as lognormal
random variable allows us to successfully apply Mul-
tivariate Gaussian Discriminator techniques to build a
prominence detector with a thorough theoretical basis.
Although these techniques are well known in the litera-
ture, to the best of the authors’ knowledge they have not
yet been applied to this problem, probably because it
was not recognized that the acustic parameters actually
follow a lognormal distribution, at least approximately.

The prominence detector is based on two separate
detectors, one for the stress accent and one for the pitch
accent. They are defined using the acoustic parameters
described above and a syllable is consider as prominent
if at least one of the two detectors finds an accent in it.

Considering this framework, it is possible to repre-
sent each prominence class by a multivariate Gaussian
distribution with the centroid

1 &
= — Xi
>
and the sample covariance matrix
W= i( ) )"
= — X; — X; —
N L © ©

as parameters of the distribution, where Xx; is the vector
of acoustic parameters of syllable i (log-normalised
duration and log-normalised energy—300-2200 Hz—
in the case of stress accent detector and log-normalised
overall nucleus energy and log(Aevent-Devent-Revent)
in case of pitch accent detector), and N is the number
of vectors composing the set we want to model. In this
way a discriminant function

gnj(v) = —log [W;| — (v — pu)"Wi (v — p))

can be built and used for classifying vectors v (|W/|
and W;l are respectively the determinant and the in-
verse of the sample covariance matrix). If, for exam-
ple, g,1(vi) > gn2(v;), then the corresponding syllable
i will be classified as belonging to the set represented
by the Gaussian n1. A similar procedure for designing
a multivariate Gaussian discriminator is described, for
example, in Gish and Schmidt (1994) and Harrington
and Cassidy (1999) applying it to different kind of
problems.

The dashed lines in Figs. 3 and 4 represent the deci-
sion thresholds between the two sets computed using
this method and obtained, in particular, by imposing

gnl(v) = gnZ(V)-
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Figure 5. Gaussian mixture that approximates the data shown in Fig. 3 concerning the stress accent (a) and Fig. 4 regarding the pitch accent
(b). The ellipses represent the area in which are contained, respectively, 95% (dashed line) and 75% (solid line) of the data for both the classes

of prominent and non-prominent syllables.

Figure 5 shows, in a bidimensional picture, the
tridimensional Gaussian mixtures that approximate re-
spectively the data of Fig. 3 regarding the stress ac-
cent (Fig. 5(a)) and Fig. 4 regarding the pitch accent
(Fig. 5(b)). The ellipses represent the area containing,
respectively, 95% and 75% of the data for both the
classes of prominent and non-prominent syllables.

By combining the two detectors, one for detecting
stress accents and the other for detecting pitch accents,
on the basis of the methodological considerations pre-
sented above, it is possible to produce a reliable promi-
nence detector. Prominent syllables can thus be identi-
fied either as pitch accented or stressed syllables.

The parameters involved in the multivariate-
Gaussian discriminators (4 and W) were estimated us-
ing a subset of TIMIT utterances, composed of 3634
syllables, spoken by 25 different speakers. The promi-
nence detector was applied to a test set extracted, again,
from the TIMIT corpus. The test set consisted of 3643
syllables, uttered by 26 different speakers of American
English. The 26 speakers used to test the system were
different from the 25 used for parameter estimation, as
well as the utterances. Note that thanks to the normali-
sation processes applied during the computation of the
considered acoustic parameters, neither the variations
across the utterances of the same speaker nor the varia-
tions introduced by different speakers needed to be con-
sidered. This prominence detector correctly classified
80.73% of the syllables as either prominent or non-
prominent (54.24% are correct rejection and 26.49%
correct detection), with an insertion rate of 11.34%
(false alarms) and a deletion rate of 7.93% (missed

detections). As pointed out before, these results were
obtained by training the system on manually classified
data with regard to prominence.

4.2.  The Unsupervised System

According to Taylor (2000), all the prosodic parameters
involved in prominence study (namely, prominence,
stress and pitch accent) should be considered as con-
tinuous quantities, avoiding any kind of categorisation.
This view is not usually adopted in linguistics, where
there is a tendency to deal with categorical/discrete
representations of the examined phenomenon. On the
other hand, for testing the reliability of an automatic
system, hand-tagged data have to be used, and as man-
ual tagging of utterances for prosodic phenomena is a
highly complex task for humans, the introduction of
categories seems unavoidable. For these reasons we
chose, following Taylor, to describe and manage the
prosodic parameters presented in this section as con-
tinuous values, to successively introduce some provi-
sional categorisations, following the linguistic point of
view, to compare the behaviour and performance of the
automatic process with the hand-tagged data.

As suggested in the literature and confirmed by our
earlier experiments, prosodic stress strictly depends on
syllable nuclei duration and energy in a specific spec-
tral band: the longer the duration and the higher the
energy in the syllable nucleus, the greater the stress per-
ception. In the same way, high overall nucleus energy
and wide pitch movement produce the strongest pitch
accent. Bearing in mind these relationships among the
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acoustic parameters, it seems possible to combine them
properly to build a “prominence function” able to de-
rive a continuous value of prominence directly from the
acoustic features of every syllable nucleus. Our pro-
posal for such a function is:

i i i
Prom' = max {en’yy_yq0 - dur', enl,

i
-D event

Revent)}

where ensoo—2200 1S the energy in the 300-2200 Hz fre-
quency band, dur is the nucleus duration, en,, is the
overall energy in the nucleus, while Aeyent, Devent and
Revent are the same as before (note that if an event is
not present in the nucleus, all these values are set to
zero). All the parameters refer to a generic i-th syllable
nucleus in the utterance examined. Although the Prom
function definition is somewhat arbitrary and tentative,
as all of the empirical functions, it has a rationale, as it
was derived in such a way as to mathematically express
the fact that a prominent syllable is usually stressed
or pitch accented or both and that these prosody pa-
rameters can be successfully derived from the acoustic
parameters that appear in the formula. However, by
contrast with the Gaussian model prominence detec-
tor, the syllables are not classified into stress accented
or pitch accented before being considered for promi-
nence. Moreover, even the prominence of a syllable
nucleus is not two-level quantised into prominent or
non-prominent, at least on a syllable-by-syllable basis.

(A

event

This continuous approach is fully justified by consider-
ing that the classification into prominent or not promi-
nent cannot be carried out, at least in an optimal way, if
the context of the neighbouring syllables is neglected.

As pointed out before, to evaluate the system by com-
paring it with hand-tagged data, it is necessary to in-
troduce some kind of categorisation in prominence, by
considering the prominence level of the syllable com-
pared with its neighbours. Following Terken, a word, or
part of a word, made prominent is perceived as stand-
ing out from its environment. Starting from this per-
spective, identifying prominent syllables implies the
search for the local maxima of the Prom function de-
fined above. Therefore, in our classifier the prominence
value of every syllable nucleus is compared with the
two neighbours and, if it represents a maximum, the
corresponding syllable nuclei (and the whole syllable)
is considered prominent.

However, it is neither impossible nor rare, in
American English, for consecutive syllables to be
prominent, for example whenever two successive
monosyllabic words are both prominent. The two
syllables would certainly present a different “level”
of prominence, but, in a dichotomic-classification
perspective (prominent or non-prominent), levels of
prominence cannot be taken into account. The previ-
ous peak (maximum) picking algorithm would fail in
this case, not recognising one of the two prominent
syllables. To partially overcome this problem, the peak
picking algorithm was enhanced to tackle this relatively
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Figure 6. Prosodic prominence function values for the utterance “For girls the overprotection is far more pervasive”. Proceeding from the top,
we have: the waveform plot, the syllable segmentation (only for comparison purposes), the syllable nuclei as detected by the system (marked by
#N#), and finally the prominence values for every nucleus identified by the segmentation procedure. The prominent nuclei, as identified by the
automatic system, are marked by a dot on the function profile, while prominent syllables, as classified by a human listener, are indicated by a

thick box in the syllable segmentation track (“syl”).
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frequent case. Whenever two subsequent syllables dif-
fer only by 15% of their prominence value, the test
is performed by ignoring the neighbours with similar
prominence and by considering instead the next sylla-
ble nuclei. Moreover, syllables that have a very high
prominence value, greater than 70% of the maximum
peak in the utterance, are also considered as prominent,
independently of the context.

A plot of prominence function for the sentence “For
girls the overprotection is far more pervasive” taken
from the TIMIT corpus is shown in Fig. 6.

Numerical results show that by making use of the
Prom function and the enhanced peak picking method
described above, it is possible to design a reliable
prominence detector. The continuous model system
was tested using a subset of TIMIT utterances, com-
posed of 7327 syllables taken from 485 utterances spo-
ken by 51 different speakers of American English.
The prominence detector correctly classified 80.61%
of the syllables as either prominent or non-prominent
(58.65% are correct rejection and 21.96% correct de-
tection), with an insertion rate of 7.22% (false alarms)
and a deletion rate of 12.17% (missed detections). As
pointed out before, this is an unsupervised system, thus
there is no need for any training phase.

5. Conclusions and Discussion

It is widely accepted in the literature that inter-human
agreement, when manually tagging prominence in
American English continuous speech, is around 80—
82% (Pickering et al., 1996; Jenkins and Scordilis,
1996). Both the prominence detectors presented here
exhibit an overall agreement of about 80.7% with the
data manually tagged by a native speaker, without ex-
ploiting any information apart from acoustic parame-
ters derived directly from the utterance waveform. As
these results are comparable with those obtained by hu-
man taggers, both the prominence detectors can be seen
as a valid alternative to manual tagging for building
large resources of speech annotated with prominence
information useful for language research and teaching.

Although the supervised detector is built on a thor-
ough theoretical basis, it does not outperform the un-
supervised detector and tends to make more insertion
errors, recognising as prominent syllables that are ac-
tually not prominent. It is likely that its overall perfor-
mance is penalised by the syllable-by-syllable detec-
tion, which does not take into account the prominence
context. By contrast the unsupervised detector, derived

from less theoretical considerations, is context aware,
and providing the same level of accuracy without the
need of any training information for system tuning, it
could be considered preferable, at least from this point
of view.

As outlined in the introduction, previous studies tend
to use different approaches. Bagshaw (1993) built a
prominence detection system for computer aided pro-
nunciation teaching, thus using the utterance transcrip-
tion to guide the segmentation and the detection pro-
cess. He obtained a 61.6% of agreement with human-
tagged data, that is much less than the one obtained by
the systems presented in our work. Jenkin, Scordilis
(1996) implemented and compared three different sys-
tem for prominence detection, all based on theoreti-
cal models that require a training phase. The first and
best performing system is based on neural networks
and achieved a correct classification on 81-84% of
cases. The second system uses hidden Markov mod-
els and correctly classified syllables with respect to
prominence with a precision ranging from 78 to 80%,
while the third, and worst performing, rule-based sys-
tem achieved a score between 67-75%. The best two
systems presented in this study reach a level of correct
classification close to the one achieved by the unsuper-
vised systems presented here, but all of them require a
complex training phase and additional tagged data to
do it. Similar considerations can be made about the re-
sults obtained by Wightman and Ostendorf (1994) with
their system, based on a model that uses decision trees
similar to a discrete HMM and an Automatic Speech
Recognition module. The model is trained using maxi-
mum likelihood estimation and achieves 83% of correct
classification when applied to prominence detection.

It would be interesting to test the validity of our ap-
proach with different languages. Theoretically, differ-
ent languages involve different combinations of acous-
tic parameters or different weightings among them, but
the methods presented here should be easily adapted to
cope with these inter-language variations. A study in
this direction is presently under way considering the
Italian language.
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